Biologically Variable or Naturally Noisy Mechanical Ventilation Recruits Atelectatic Lung

W. ALAN C. MUTCH, STEFAN HARMS, M. RUTH GRAHAM, STEPHEN E. KOWALSKI, LINDA G. GIRLING, and GERALD R. LEFEVRE

Department of Anaesthesia and Neuroanaesthesia Research Laboratory, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada

Biologically variable mechanical ventilation (Vbv)-using a computer-controller to mimic the normal variability in spontaneous breathing-improves gas exchange in a model of severe lung injury (Lefevre, G. R., S. E. Kowalski, L. G. Girling, D. B. Thiessen, W. A. C. Mutch. Am. J. Respir. Crit. Care Med. 1996;154:1567-1572). Improved oxygenation with V by, in the face of alveolar collapse, is thought to be due to net volume recruitment secondary to the variability or increased noise in the peak inspiratory airway pressures (Ppaw). Biologically variable noise can be modeled as an inverse power law frequency distribution ($y \propto 1/f^a$) (West, B. J., M. Shlesinger. Am. Sci. 1990;78:40-45). In a porcine model of atelectasis-right lung collapse with one-lung ventilation-we studied if \dot{V} by (n = 7) better reinflates the collapsed lung compared with conventional monotonously regular control mode ventilation ($\dot{V}c$; n = 7) over a 5-h period. We also investigated the influence of sigh breaths with $\dot{V}c$ ($\dot{V}s$; n = 8) with this model. Reinflation of the collapsed lung was significantly enhanced with $\dot{V}bv$ —greater Pa_{O_2} (502 \pm 40 mm Hg with $\dot{V}bv$ versus 381 \pm 40 mm Hg with $\dot{V}c$ at 5 h; and 309 ± 79 mm Hg with $\dot{V}s$; mean \pm SD), lower Pa_{CO_2} (35 \pm 4 mm Hg versus 48 \pm 8 mm Hg and 50 \pm 8 mm Hg), lower shunt fraction (9.7 \pm 2.7% versus 14.6 \pm 2.0% and 22.9 \pm 6.0%), and higher respiratory system compliance (Crs) (1.15 \pm 0.15 ml/cm H_2O/kg versus 0.79 \pm 0.19 ml/cm H_2O/kg and 0.77 \pm 0.13 ml/cm H_2O/kg)—at lower mean Ppaw (15.7 \pm 1.4 cm H₂O versus 18.8 \pm 2.3 cm H₂O and 18.9 \pm 2.8 cm H₂O). Vbv resulted in an 11% increase in measured tidal volume (VTm) over that seen with $\dot{V}c$ by 5 h (14.7 \pm 1.2 ml/kg versus 13.2 ml/kg). The respiratory rate variability programmed for Vbv demonstrated an inverse power law frequency distribution ($y \propto 1/f^a$) with $a = 1.6 \pm$ 0.3. These findings provide strong support for the theoretical model of noisy end-inspiratory pressure better recruiting atelectatic lung. Our results suggest that using natural biologically variable noise has enhanced the performance of a mechanical ventilator in control mode.

Recruitment of atelectatic lung units and maintenance of alveolar patency is an integral goal of mechanical ventilation. We have recently developed a new mode of mechanical ventilation called biologically variable ventilation (Vbv). This computer-controlled ventilator mimics the normal spectrum of breathing by incorporating breath-to-breath variability in respiratory rate (f) and tidal volume (VT). Using Vbv we have

Am J Respir Crit Care Med Vol 162. pp 319–323, 2000 Internet address: www.atsjournals.org demonstrated improved arterial oxygenation (Pa_{O_2}) without an increase in mean airway pressure (Paw) in a porcine model of severe lung injury (1). Suki and colleagues (2) postulate that Vbv improves Pa_{O_2} owing to recruitment of collapsed alveoli, which open in bursts or avalanches (3). They speculate that Vbv is an example of stochastic resonance—the addition of noise to an input signal (variable peak airway pressure [Ppaw]) to amplify output (Pa_{O_2}) in a nonlinear system (4). With the noisy input signal seen with Vbv, the volume gained at higher Ppaw greatly exceeded the volume lost at lower pressures over time, the net result being improved oxygenation without an increase in airway pressure (Paw).

To test the hypothesis that Vbv enhances recruitment of collapsed alveoli, we developed a porcine model of stable unilateral lung collapse and compared lung reinflation over 5 h using Vbv versus conventional control mode ventilation (Vc) at similar minute ventilation.

We also examined if the addition of sigh breaths to Vc was effective in recruiting collapsed alveoli. We programmed the sigh breaths to occur at the same interval with the same delivered volume as the largest breaths with Vbv. If sighs programmed in this manner were as efficacious as Vbv, then the more complicated variability programmed with Vbv would be unnecessary.

METHODS

The Committee for Animal Experimentation at the University of Manitoba approved the study. When depth of anesthesia was adequate (isoflurane 1.5 minimal alveolar concentration [MAC] in 100% O_2), a tracheostomy was done and a double-lumen endotracheal tube was placed in the airway. Correct positioning was confirmed by fibreoptic bronchoscope. Mechanical ventilation by Vc was instituted with an Ohio 7000 anesthesia ventilator (Ohio Instruments, Madison, WI) with f approximately 15 breaths/min and minute ventilation adjusted to maintain the end-tidal CO2 at approximately 35 mm Hg. Catheters were placed for blood sampling and pressure measurements. Airway pressures and volumes were measured by pneumotachograph (Hans Rudolph, Kansas City, MO). After baseline measurements, the right side of the double-lumen endotracheal tube was opened to air to allow the right lung to collapse. A minithoracotomy (pleural opening 2.5 cm) permitted complete collapse and observation of the lung. The lung remained collapsed for 1 h. At this point, the double-lumen tube was removed and replaced with a cuffed tracheostomy tube for reexpansion of the right lung. Animals were randomly allocated to continue with Vc or switched to Vbv. Conceptually, this is equivalent to flipping a switch: on = biological variability; off = no variability. Before the switch was flipped in those animals receiving Vbv, f and measured tidal volume (VT_m) were the same in each group. The delivered minute ventilation remained unchanged from baseline and continued with either mode for the next 5 h. Blood gases and O2 contents (arterial and mixed venous) and expired gas samples were measured (Radiometer ABL3 and Radiometer OSM3, Copenhagen NV, Denmark). Static respiratory system compliance (Crs) was measured by transiently clamping the expiratory limb of the ventilatory circuit at

⁽Received in original form March 25, 1999 and in revised form October 28, 1999)

Some of the concepts discussed in this article are protected by U.S. Patent 5,647,350, "Control of Life Support Systems," owned by Biovar Life Support Inc., jointly held by Drs. W. A. C. Mutch, G. R. Lefevre, the University of Manitoba, and the Crocus Investment Fund.

Supported by the Crocus Investment Fund and the Industrial Research Assistance Program.

Correspondence and requests for reprints should be addressed to W. A. C. Mutch, M.D., Department of Anaesthesia, St. Boniface General Hospital, 409 Taché Avenue, Winnipeg, MB, R2H 2A6 Canada. E-mail: amutch@ms.umanitoba.ca

end inspiration. Calculated indices included shunt fraction ($\dot{Q}s/\dot{Q}\tau),$ and Crs ($\Delta V/\Delta P).$

Computer-controlled Ventilation

The computer-controller and software for the ventilator have been previously described (1). Data for the modulation file were obtained from an awake, spontaneously breathing animal. The variability file used with Vbv is shown in Figure 1.

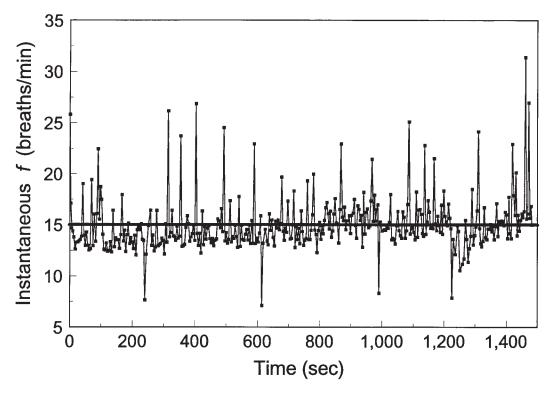
Computer-controlled Sigh Ventilation

Examination of Figure 1 reveals four instantaneous breaths below 10 breaths/min. To deliver computer-controlled sighs, a modulation file was written so that all instantaneous breaths were set to 15 breaths/ min except at the four time periods where the instantaneous breaths were < 10 breaths/min. At these times the instantaneous breath rate was programmed as shown in Figure 1. Thus, each of these low breath rates resulted in delivery of a large VT or sigh breath at the same in terval and magnitude as those programmed for Vbv. In addition, the duration of the modulation file was the same as with Vbv before it looped to repeat itself. Experiments were done *post hoc* in this group. Every attempt was made to ensure that this group did not differ at baseline or with one-lung ventilation from the other two groups.

Post hoc Analysis

Data acquisition files of airway pressure and flows were processed to integrate the area under the pressure-time and flow-time curves to give Paw and volume. Mean Ppaw was also calculated.

Statistical Analysis


Data were analyzed by repeated measures analysis of variance (ANOVA). A p value ≤ 0.05 was considered significant for group \times time interactions or differences between groups. Comparisons between and within groups were based on generated least-squares means matrices with Bonferroni's correction applied when multiple comparisons were made. Data are presented as mean \pm SD unless otherwise noted.

Inverse power law analysis was done as follows: mean instantaneous f was determined, then each instantaneous f was subtracted from mean f, this value was squared, then log transformed. These data were partitioned into incremental bins of equal size to determine their frequency distribution. The probability of each frequency was determined by Ni/N where Ni = number of observations in a given frequency bin and N = total number of observations. A log transform of the probability distribution was derived. The log probability distribution versus log f variation was plotted. The confidence interval and correlation coefficient were derived by regression analysis.

RESULTS

Data were analyzed on 22 experiments (n = 7 with Vbv and $\dot{V}c$ and n = 8 with $\dot{V}s$). Measured mean f was the same in all groups at baseline values and during the period of one-lung ventilation. At these times, there were only minor differences seen for any measured parameter between groups (Table 1). Importantly, at baseline there were no differences in Pa_{O_2} , Pa_{CO2}, Qs/Qt, Ppaw, Vt or Crs between groups. With onelung ventilation, the Pa_{O2} decreased significantly with approximately a 4-fold increase in Qs/QT. The Ppaw nearly doubled. The Crs decreased to approximately 40% of baseline values. After 60 min both lungs were again ventilated. In the group receiving Vbv and Vs, the computer-controller was activated. In these two groups, the delivered minute ventilation was not changed from its baseline settings with Vc. Mean f was scaled to 15 breaths/min, the same mean rate as in the control group-measured rate with Vbv remained unchanged from baseline at 13.9 breaths/min; coefficient of variation 18%. At 5 h, Pa_{O_2} was significantly higher with Vbv than in the other two groups [group \times time interaction (G \times T); p < 0.0001]). Carbon dioxide clearance was superior with Vbv such that Pa_{CO_2} was significantly lower at 5 h than for the other two groups (G \times T; p < 0.0001). Mean Ppaw was lower at 5 h with Vbv than with Vc or Vs (G imes T; p < 0.0001). VT was significantly greater with Vbv at 5 h (G \times T; p < 0.0001). Crs was much greater with Vbv by 5 h than in the other two groups (G imesT; p < 0.0001).

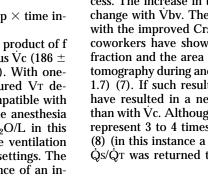
Figure 2 shows the changes in Pa_{O_2} over time for each group from Time 0 (end one-lung ventilation) to experiment completion at 5 h. The Pa_{O_2} increases more rapidly with Vbv

Figure 1. Modulation data file used to control f with Vbv. Instantaneous f (in breaths/min) versus time (s). There were 369 different f values over 24.7 min before the file looped to repeat itself. The mean programmed f was 15 breaths/min (*thick line*).

TABLE 1 COMPARISON OF Vbv, Vc, AND Vs EXPERIMENTS*

CONTACISON OF VDV, VC, AND VS EXTERIMENTS			
	\dot{V} bv Group ($n = 7$)	Vc Group (<i>n</i> = <i>7</i>)	Vs Group (<i>n = 8</i>)
Pa_{Ω_2} , mm Hg			
Baseline	521 ± 25	515 ± 39	561 ± 34
One-lung ventilation	101 ± 15	109 ± 34	114 ± 18
5 h	$502 \pm 40^{\dagger\ddagger}$	$381 \pm 40^{\$}$	309 ± 79
Pa _{co2} , mm Hg			
Baseline	34.7 ± 2.2	34.9 ± 2.4	38.2 ± 4.7
One-lung ventilation	$60.3 \pm 7.1^{\dagger}$	$60.3 \pm 4.2^{\$}$	67.0 ± 7.9
5 h	$34.9 \pm 3.7^{\dagger \ddagger}$	48.4 ± 8.4	50.2 ± 7.5
Qs/Qт, %			
Baseline	$9.8 \pm 3.5^{\ddagger}$	$9.2 \pm 3.5^{\$}$	6.9 ± 2.9
One-lung ventilation	40.1 ± 4.4	38.4 ± 9.5	39.8 ± 6.6
5 h	$9.7 \pm 2.7^{\dagger \ddagger}$	$14.6 \pm 2.0^{\$}$	22.9 ± 6.0
Ppaw, cm H₂O			
Baseline	15.3 ± 1.7	14.9 ± 2.1	15.9 ± 3.3
One-lung ventilation	29.0 ± 5.4	27.7 ± 3.7	25.5 ± 3.7
5 h	$15.7 \pm 1.4^{\dagger \ddagger}$	18.8 ± 2.3	18.9 ± 2.8
Vt, ml/kg			
Baseline	13.3 ± 0.8	13.9 ± 0.6	14.1 ± 0.9
One-lung ventilation	9.7 ± 2.0	9.9 ± 1.4	10.2 ± 0.9
5 h	$14.7 \pm 1.2^{\dagger \ddagger}$	13.2 ± 1.6	12.2 ± 0.8
Crs, ml cm H ₂ O ⁻¹ kg ⁻¹			
Baseline	1.03 ± 0.13	1.11 ± 0.17	1.11 ± 0.15
One-lung ventilation	0.42 ± 0.16	0.44 ± 0.11	0.52 ± 0.10
5 h	$1.15 \pm 0.15^{\dagger \ddagger}$	0.79 ± 0.19	0.77 ± 0.13

Values are expressed as mean ± SD.


 † p < 0.05 Vbv versus Vc.

p < 0.05 Vbv versus Vs.

 $^{\$}$ p < 0.05 Vc versus Vs.

and reaches a higher asymptote (p < 0.0001 group × time interaction) than in the other two groups.

At baseline, during Vc, minute ventilation, the product of f and $V \tau_m$ (f \times $V \tau_m)$ was not different for Vbv versus Vc (186 \pm 11 ml/kg with Vbv and 187 \pm 10 ml/kg with Vc). With onelung anesthesia with both groups on Vc, measured VT decreased as airway pressure increased. This is compatible with the volume lost because of the compliance of the anesthesia circuit (circuit compression volume; 2 ml/cm H₂O/L in this case). With switch to Vbv, the measured minute ventilation product increased despite unchanged ventilator settings. The $f \times V_{T_m}$ product increased solely as a consequence of an in-

550 Group x Time Interaction: p < 0.0001 450 PaO₂ (mm Hg) 350 250 **3VV GROUP** 150 CV GROUP n = 7 SV GROUP n = 8 50 0 2 3 1 4 5

Figure 2. ${\rm Pa}_{\rm O2}$ versus time for the 3 experimental groups. Group \times time interaction by ANOVA, p < 0.0001. With Vbv, Pa_{O2} increases more quickly and approaches a higher asymptote.

Time (hr)

crease in measured VT. Measured f remains unchanged (> 75 instantaneous breath intervals and VT measured per observation with Vbv). Measured VT was approximately 11% greater with $\dot{V}bv$ at 5 h compared with $\dot{V}c$, such that $\dot{V}vbv = \dot{V}vc + \dot{V}vc$ $\alpha V \dot{v} c$ with $\alpha = 0.11$.

In Figure 3 we have plotted log probability distribution versus log variability in f. An inverse power law frequency distribution was seen with slope -1.6 ± 0.3 .

DISCUSSION

In this simple experimental model of reversible atelectasisdeflation of one lung in the pig-Vbv resulted in more rapid and greater recruitment of collapsed lung. Our results are compatible with the theoretical model that "noisy" Ppaw would better recruit atelectatic lung units (2). With Vbv, effective VT increased 11% under these experimental conditions. Suki and coworkers showed the probability functions for alveolar recruitment, which occur in avalanches (3, 5). These functions follow inverse power law frequency distributions ($y \propto 1/f^a$; examples of noise in natural phenomena) (6), with slopes of -1.1 to -2.5. We have plotted the probability distribution of the variability in f used with Vbv (Figure 3). This function also follows an inverse power law frequency distribution with a negative slope of 1.6.

Suki and coworkers suggest that "both the magnitude and timing of pressure excursion applied at the airway entrance during artificial ventilation may be critical in triggering the avalanche process of alveolar recruitment" (3). As such, variable f and VT with Vbv presumably facilitates this avalanche process. The increase in the $f \times V \ensuremath{\ensuremath{\mathsf{T}}}_m$ product is the fundamental change with Vbv. The increase in measured VT is compatible with the improved Crs seen at 5 h with Vbv. Gunnarsson and coworkers have shown a positive correlation between shunt fraction and the area of atelectasis as measured by computed tomography during anesthesia (shunt = $1.6 \times$ atelectatic area + 1.7) (7). If such results apply to this experiment, Vbv would have resulted in a net 3% greater atelectatic area recruited than with Vc. Although of small magnitude, this change would represent 3 to 4 times greater area if such lung were aerated (8) (in this instance a difference in area of 9 to 12%). At 5 h, Qs/QT was returned to baseline with Vbv but remained ele-

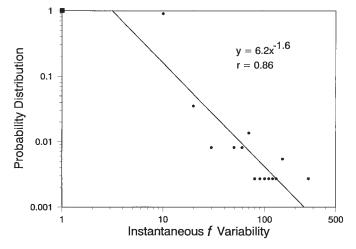


Figure 3. Log-log plot of probability distribution versus f variability used to program the biologically variable ventilator. A y $\propto 1/f^a$ plot is obtained with $a = 1.6 \pm 0.3$. The solid box shows the probability distribution with Vc. The probability is 1 with no f variability. The f variability is shown as 1 because the log of zero variability is undefined. The difference in the behavior of the two ventilatory modes is clear.

vated at almost 160% of normal with Vc and 330% of normal with Vs, suggesting near complete recruitment of atelectatic lung with "noisy" ventilation. The lower Pa_{CO_2} in the Vbv group also suggests better matching of ventilation to perfusion (VA/Q).

Examination of Figure 1 reveals 4 low-frequency rates in the modulation file/cycle with instantaneous f approximately 7/min. As mean VT in this group was 14.7 ml/kg, the calculated volume of the lowest breath rate would be $(13.9/7 \times 14.7)$ ml/kg or 29 ml/kg. Concern was raised that the large VT with the low-frequency breaths represented sighs and that volume recruitment by this mechanism alone could account for the documented improvement in gas exchange during Vbv.

To address this issue, we examined eight additional animals (Vs group), ventilated in the same manner as the original Vc group, but submitted to programmed "sighs" of identical magnitude and frequency as the low-frequency, large VT breaths in the Vbv group. Thus, this group of animals was exposed to the same inflation stress as the Vbv group but without the biologically variable noise of the Vbv group. Despite essentially identical measurements of gas exchange and respiratory mechanics at baseline values and during one-lung ventilation, Vs was not associated with any improvement in these parameters as seen with Vbv after 5 h of mechanical ventilation and conferred no advantage compared with Vc alone (*see* Table 1). Pa_{O2} and shunt fraction were, in fact, worse with this ventilatory mode, with the proviso that this was a *post hoc* comparison.

Although the issue of sighs as an effective volume recruitment maneuver during prolonged ventilation is controversial, examination of the literature suggests that sighs are only effective when administered as a sustained inflation with high pressures under specific circumstances. Sighs of the magnitude seen during Vbv have not been shown to produce beneficial effects on Crs or gas exchange (9). Balsys and coworkers have shown that even larger sighs of 46 ml/kg resulted in unsustained increases in compliance and insignificant increases in Pa_{O_2} in healthy lungs in mechanically ventilated dogs (10). Bond and coworkers demonstrated that sustained inflation increased respiratory compliance only during conventional mechanical ventilation using low VT (7 ml/kg) and low end-expiratory pressure. Sustained inflation was of no benefit during conventional ventilation with high VT (14 to 17 ml/kg)-the range of the current study-or with low VT and high end-expiratory pressure (11). Tusman and coworkers showed that a recruitment strategy (VT up to 18 ml/kg coupled with increasing levels of positive end-expiratory pressure [PEEP] up to 15 cm H₂O) can improve arterial oxygenation after 40 min of anesthesia (12). Pelosi and coworkers demonstrated that gas exchange and respiratory mechanics were improved with 3 consecutive sighs/min at 45 cm H₂O plateau pressure over 1 h in patients with acute respiratory distress syndrome (ARDS) ventilated with a lung-protective strategy. The improvements seen were lost within 1 h after return of ventilatory parameters to baseline values (13). Thus, improvement in gas exchange occurs at the expense of increases in mean and Ppaw with sustained alveolar recruitment and it is not surprising that the relatively modest sighs delivered during Vs resulted in no benefit in the current study.

Biologically variable ventilation confers the advantage of improved gas exchange at an unchanged Paw and a lower Ppaw than either $\dot{V}c$ or $\dot{V}s$. Exclusive to $\dot{V}bv$, the animals also received many small VT/cycle with the potential for alveolar derecruitment.

Ongoing atelectasis is of significant concern during general anesthesia with mechanical ventilation (8). The near complete recovery of Pa_{O_2} and $\dot{Q}s/\dot{Q}T$ to baseline values with $\dot{V}bv$ indi-

cates better V_A/Q matching over time during a lengthy period of anesthesia in the present study. As such, Vbv may be of clinical relevance for control mode ventilation during anesthesia (14).

All variability files used to date in the laboratory have demonstrated inverse power law frequency distributions and all have been obtained by lengthy collections of physiological signals such as heart rate (1), respiratory rate, and blood pressure (15). Variability in these physiological signals is ubiquitous in mammals (16-18). Further clarification is necessary to determine if biological variability is representative of stochastic resonance as defined by Suki and coworkers (2). If such turns out to be the case, then biological variability to recreate normal variation in VT and f may be an example of tuned noise to enhance an output (Pa_{O_2}) in a nonlinear system (4). We have demonstrated that the programmed variability follows an inverse power law frequency distribution. This "noisy" behavior may explain the effectiveness of Vbv. It is important to realize that signals with inverse power law frequency distributions are not random (a = 0 or white noise). Others have suggested that such biologically variable noise demonstrates deterministic behavior (19, 20). This experiment provides strong support for the theoretical proposal of how noisy Ppaw can increase recruitment of collapsed alveoli (2). It is uncertain if $\alpha = 0.11$ has optimized the benefits that can be obtained with Vbv in this context. Whether or not such a "noisy" mechanical ventilator has clinical utility must await further study. However, it is entirely possible that clinical life support systems may be improved by programming them for biologically variable or natural noise.

Acknowledgment: The authors thank Barb Robson and Carolyn Gibbs for excellent technical assistance and Mary Cheang (M.Math) for statistical analysis.

References

- Lefevre, G. R., S. E. Kowalski, L. G. Girling, D. B. Thiessen, and W. A. C. Mutch. 1996. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. *Am. J. Respir. Crit. Care Med.* 154:1567–1572.
- Suki, B., A. M. Alencar, M. K. Sujeer, K. R. Lutchen, J. J. Collins, J. S. Andrade, Jr., E. P. Ingenito, S. Zapperi, and H. E. Stanley. 1998. Lifesupport system benefits from noise. *Nature* 393:127–128.
- Suki, B., A. Barabási, Z. Hantos, F. Peták, and H. E. Stanley. 1994. Avalanches and power-law behaviour in lung inflation. *Nature* 368:615–618.
- Wiesenfeld, K., and F. Moss. 1995. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. *Nature* 373:33–36.
- Suki, B., J. S. Andrade, Jr., M. F. Coughlin, D. Stamenovic, H. E. Stanley, M. Sujeer, and S. Zapperi. 1998. Mathematical modeling of the first inflation of degassed lungs. *Ann. Biomed. Eng.* 26:608–617.
- West, B. J., and M. Shlesinger. 1990. The noise in natural phenomena. Am. Sci. 78:40–45.
- Gunnarsson, L., L. Tokics, H. Gustavsson, and G. Hedenstierna. 1991. Influence of age on atelectasis formation and gas exchange impairment during general anaesthesia. *Br. J. Anaesth.* 66:423–432.
- Hedenstierna, G. 1998. Gas exchange pathophysiology during anesthesia. *In* P. H. Breen, editor. Anesthesiology Clinics of North America. W.B. Saunders, Philadelphia. 113–127.
- 9. Housley, E., N. Louzada, and M. R. Becklake. 1970. To sigh or not to sigh. Am. Rev. Respir. Dis. 101:611-614.
- Balsys, A. J., R. L. Jones, S. F. P. Man, and A. Wells. 1980. Effects of sighs and different tidal volumes on compliance, functional residual capacity and arterial oxygen tension in normal and hypoxemic dogs. *Crit. Care Med.* 8:641–645.
- Bond, D. M., J. McAloon, and A. B. Froese. 1994. Sustained inflations improve respiratory compliance during high-frequency oscillatory ventilation but not during large tidal volume positive-pressure ventilation in rabbits. *Crit. Care Med.* 22:1269–1277.
- Tusman, G., S. H. Böhm, G. F. Vazquez de Anda, J. L. do Campo, and B. Lachmann. 1999. "Alveolar recruitment strategy" improves arterial oxygenation during general anaesthesia. *Br. J. Anaesth.* 82:8–13.
- Pelosi, P., P. Cadringher, N. Bottino, M. Panigada, F. Carrieri, E. Riva, A. Lissoni, and L. Gattinoni. 1999. Sigh in acute respiratory distress

syndrome. Am. J. Respir. Crit. Care Med. 159:872-880.

- Mutch, W. A. C., G. M. Eschun, S. E. Kowalski, M. R. Graham, L. G. Girling, and G. R. Lefevre. 2000. Biologically variable ventilation prevents deterioration of gas exchange during prolonged anaesthesia. *Br. J. Anaesth.* 84:197–203.
- Mutch, W. A. C., G. R. Lefevre, D. B. Thiessen, L. G. Girling, and R. K. Warrian. 1998. Computer-controlled cardiopulmonary bypass increases jugular venous oxygen saturation during rewarming. *Ann. Thorac. Surg.* 65:59–65.
- Baselli, G., S. Cerutti, F. Badilini, L. Biancardi, A. Porta, M. Pagani, F. Lombardi, O. Rimoldi, R. Furlan, and A. Malliani. 1994. Model for the assessment of heart period and arterial pressure variability inter-

actions and of respiration influences. *Med. Biol. Eng. Comput.* 32: 143-152.

- 17. Pagani, M., F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, G. Sandrone, G. Malfatto, S. Dell'Orto, E. Piccaluga, M. Turiel, G. Baselli, S. Cerutti, and A. Malliani. 1986. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. *Circ. Res.* 59:178-193.
- Rimoldi, O., S. Pierini, A. Ferrari, S. Cerutti, M. Pagani, and A. Malliani. 1990. Analysis of short-term oscillations of R-R and arterial pressure in conscious dogs. *Am. J. Physiol.* 258:H967–H976.
- West, B. J., and A. L. Goldberger. 1987. Physiology in fractal dimensions. Am. Sci. 75:354–365.
- Goldberger, A. L., and B. J. West. 1987. Fractals in physiology and medicine. Yale J. Biol. Med. 60:421–435.